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This paper reports a theoretical study of the solvent effects on various isomers of the palladium PdH3Cl-
(NH3)2/[PdH2Cl(NH3)]-(NH4)+ complexes in dichloromethane. The influence of the solvent is investigated
by continuum self-consistent reaction field (SCRF) calculations and compared with discrete second-order
Møller-Plesset (MP2) calculations. We present a theoretical analysis of the free energy of solvation in the
continuum model in terms of the physical contributions (electrostatic, induction, dispersion, and exchange-
repulsion) as defined by the symmetry-adapted perturbation theory (SAPT). It is shown that the free energy
of solvation in the continuum model correctly accounts for the electrostatic energy and for that part of the
induction term which describes the polarization of the solvent by the solute. These theoretical findings are in
agreement with the numerical results from the discrete SAPT and continuum SCRF calculations. The global
agreement between the SCRF dispersion contribution computed from empirical atom-atom type expressions
and the SAPT results is rather good. By contrast, the SCRF exchange-repulsion term is strongly underestimated,
which suggests that the parametrization of the SCRF empirical expression is not correct for the palladium
compounds. Both the discrete MP2 and continuum SCRF models predict the same relative stabilization for
the isomers of the palladium complexes in dichloromethane.

I. Introduction

As discussed in the previous paper,1 only a few theoretical
studies have considered the influence of the solvent in the realm
of organometallic reactivity, in contrast with what is currently
done in organic chemistry. Furthermore, the solvents that have
been considered in most theoretical studies carried out so far
on such systems seem to have either strong coordinative
properties or a strong hydrogen bonding ability in addition to
their intrinsic polarity;2-6 see, however, ref 7. We have chosen,
instead, to focus on the dielectric properties of the solvent and
started recently a systematic study of some palladium hydride
complexes in dichloromethane.1,8,9Palladium hydride complexes
are key intermediates in many palladium-mediated or catalyzed
reactions10-13 that are very often carried out in dichloromethane.
It is generally assumed that CH2Cl2 has weak hydrogen bonding
or coordinative properties (note, however, that there have been
a few cases in which such properties have been exemplified).14-18

The systems we concentrated on are models of Pd(II) or Pt(II)
complexes that can be protonated either on the metal or on the
nitrogen atom; see Scheme 1.12 We first considered the systems

in the gas phase19-22 and then started to look at the effect of
the solvent on the neutral and zwitterionic forms.1,8,9

Two categories of methods can be used to study the solvent
effect in such systems: one can either treat the full system (made
of the solute and a few solvent molecules) as an ensemble of
discrete particles or use a continuum model. Both possibilities
have been explored. The results obtained with the discrete model
are reported in ref 1. In particular, taking advantage of the
complementary nature of the supermolecule and the perturbative
treatments, we could examine the behavior of the interaction
energy components according to the ligands and the forms of
the palladium system. One should stress, however, that the size
of the systems under study puts some limits on the accuracy of
the results obtained within the discrete model. As far as the
other alternativesthe continuum modelsis concerned, its
performance for organometallic systems is quite unexplored.
In the self-consistent reaction field (SCRF) treatment the solvent
is represented by a polarizable continuum in which the palladium
complex is immersed within a cavity. In a preliminary work,
we proposed to use a cavity of adjustable dimensions.9,23 The
SCRF approach allows, in particular, to check the influence of
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the electrostatic type interactions (both short range and long
range) on the relative stability of the different forms of the
complexes.

The present paper is focused on an overall comparison of
the discrete supermolecule model and the SCRF approach. We
also briefly compare the systems of the Scheme 1 to their bis-
(methyl) analogues Pd(H)(CH3)2Cl(NH3)2 and [Pd(CH3)2Cl-
(NH3)]-(NH4)+. Numerical results are reported, together with
a formal analysis of the energetical contributions considered.
The paper will be organized as follows. We will first outline in
section II the methods that have been used in our calculations.
In particular, we will present an analysis of the free energy of
solvation in the continuum model in terms of the physical
contributions, as defined by the perturbation theory of inter-
molecular forces. Computational details are also given in this
section, and the geometries used for either the SCRF calculations
or within the discrete solvation model are recalled. Numerical
results and discussion, focused on the comparison of the
solvation energies from the continuum and discrete calculations,
are presented in section III. Finally, concluding remarks are
given in section IV.

II. Methods of Calculations

A. Discrete Model: Supermolecule and SAPT Calcula-
tions. For the discrete model, both the supermolecule second-
order Møller-Plesset theory (MP2) and the symmetry-adapted
perturbation theory (SAPT) have been used. In the previous
paper it was shown that we could restrict ourselves to the pair
solute-solvent approximation, neglecting the pair solvent-
solvent and nonadditive many-body interactions. The MP2
interaction energy,Eint

MP2, was thus given by the sum of the pair
energies,Eint

MP2(SBi), describing the interaction between the
molecule of the solute (S) and theith molecule of the solvent
(Bi). The supermolecular energies were corrected for the basis
set superposition error (BSSE) with the counterpoise method
of Boys and Bernardi.24

Similarly, the SAPT interaction energy of the solute-solvent
system,Eint

SAPT, is represented as the sum of the SAPT solute-
solvent pair interaction energies,Eint

SAPT. The interaction energy
for the pair SBi was computed from the following expression,25

where the consecutive terms on the rhs of eq 1 denote the
electrostatic, induction, dispersion, and exchange energies,
respectively. The exchange contribution, dominated by the first-
order exchange term,Eexch

(1) (SBi), which gives most of the total
exchange energy, also accounts for second-order terms (exchange-
induction,Eexch-ind

(2) (SBi), exchange-deformation,Eexch-def
(2) (SBi),

and exchange-dispersion,Eexch-disp
(2) (SBi)). For computational

reasons, the intramonomer correlation effects on these terms26-31

have been neglected. As commented in ref 1, this may affect
the electrostatic and first-order exchange energies.

B. SCRF Calculations.In the SCRF formalism, as developed
by Rivail and collaborators,32-39 the solute-solvent system is
modeled by a polarizable continuum (characterized by a
dielectric constantε) in which the solvent molecule is immersed
within an ellipsoidal cavity.34,35The Hamiltonian describing the
solute in the cavity is given by

whereH0 is the Hamiltonian of the solute in the vacuum and
the operatorVSCRF describes the interaction between the
permanent multipole moments of the solute and the moments
of the reaction field generated by the polarized solvent,

HereMl
m denotes the operator of themth spherical component

of the multipole moment of orderl of the solute, and the reaction
field moments are given by

The numerical factorsfll ′
mm′ are the so-called reaction field

factors, and depend on the dielectric constantε of the solvent,
and on the geometrical parameters of the ellipsoidal cavity. The
wave functionΨS appearing in eq 4 is the solution of the
Schrödinger equation with the Hamiltonian given by eq 2. Thus,
in the SCRF theory one solves a nonlinear Schro¨dinger equation
that describes the interactions of the solute molecule with a
polarizable continuum representing the solvent. The free energy
of solvation is given by the expectation value,

whereE0 is the exact energy of the solute in the vacuum. One
may note that the factor of half appearing in the expression for
∆G is a direct consequence of the fact that the solvent is
assumed to be a linear dielectric.

In practice, the Schro¨dinger equation with the Hamiltonian
of eq 2 is first solved within the self-consistent field approxima-
tion,35 leading to the so-called SCRF free energy of solvation,
∆GSCRF. If the correlation corrections are included, e.g., via the
MP2 approach,38,39 we get the MP2-SCRF free energy of
solvation∆GMP2-SCRF.

It should be noted that the free energy of solvation as given
by eq 5 does not account for the dispersion and repulsive

SCHEME 1 Eint
SAPT(SBi) ) Eelst

(1) (SBi) + Eind
(2)(SBi) + Edisp

(2) (SBi) +
Eexch(SBi) (1)

H ) H0 + VSCRF (2)

VSCRF∑
l)0

∞

∑
m)-l

l

Rl
m Ml

m (3)

Rl
m ) ∑

l′)0

∞

∑
m′)-l′

l′

fll ′
mm′〈ΨS|Ml′

m′|ΨS〉 (4)

∆G )
〈ΨS|H0 + 1

2
VSCRF|ΨS〉

〈ΨS|ΨS〉
- E0 (5)
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contributions (cf. also section III.B; note also that∆GMP2-SCRF

includes the intramonomer correlation effects at the MP2 level
but entirely neglects the intermonomer correlation, i.e., the
dispersion). In principle, the dispersion term could be evaluated
using the methodology of Rivail and collaborators.36,37 Since
we did not have access to the corresponding code, and since
we also wanted to include the repulsive contribution (not
implemented thus far in the group of Rivail), we decided to
compute these two terms with the SCRF approach advocated
by Tomasi and collaborators40-43 (see, also, ref 44 for a review).
Thus, the dispersion and repulsive contributions were obtained
from empirical atom-atom type expressions43 and averaged over
the solvent distribution using the prescription of ref 43.

C. Comparison of the SAPT and SCRF Approaches.In
this section we will derive approximate relations between the
SCRF and SAPT methods. Before we go on with the derivations,
we would like to stress that these two methods are quite
different. Indeed, the former describes the solvation energetics
in terms of the free energy of solvation at a finite temperature
T, while in the latter one considers the interaction energy
between the molecule of the solute and all molecules of the
solvent atT ) 0 K. One should also note that in the SCRF
theory the solvent is modeled by a polarizable continuum, so
the Hamiltonian of eq 2 is semiempirical, although the actual
mathematical form ofVSCRFcan to some extent be justified on
nonempirical grounds.45-47 Thus, our comparison of the two
methods will only be qualitative, and the agreement between
the SCRF and SAPT results within, e.g., 30% will be considered
as reasonable (see section III.B).

Since in the SCRF model one considers the interaction of
the solute molecule with a polarizable continuum of the solvent,
we will assume a mean-field47 or Hartree-Fock48 type separa-
tion of the wave function describing the system solute-solvent.
Thus, the discrete equivalent of the Hamiltonian of eq 2
describing the solute in the electrostatic field of the polarized
solvent should read

where VSBi denotes the intermolecular interaction operator
between the electrons and nuclei of the solute molecule and
the ith molecule of the solvent, andΨBi is the wave function of
the ith molecule of the solvent including the induction effects
to infinite order. I.e., this wave function fully accounts for the
electrostatic polarization of theith molecule of the solvent by
the electrostatic field of the solute. The subscript Bi at 〈...〉Bi

means that the integration is performed only over the coordinates
of the electrons of Bi. Although there is no formal cor-
respondence between the perturbation operator appearing on the
rhs of eq 6 and the SCRF operatorVSCRF (see, for instance,
refs 45-47 for a discussion of this point), their physical meaning
is quite similar. Both operators describe the interaction of the
permanent and induced moments on S and Bi. We will solve
the Schro¨ndinger equation with the Hamiltonian of eq 6 by
perturbation theory and employ the resulting perturbation
expansion for the wave function of the solute to derive a
perturbation expansion of the free energy of solvation, eq 5.
We will limit the perturbation expansion for the wave function
of the solute to the first order inVSBi, so the expansion of∆G
will be exact to the second order.

To proceed further, first we note that the wave function of
the ith solvent molecule including the polarization by the
electrostatic field of the solute can be written as

where ΨBi

(0) is the wave function of theith molecule of the
solvent in the vacuum, andΨBi

(1)(Bi r S) denotes the first-order
induction wave function describing the (first-order) polarization
of the ith molecule of the solvent by the electrostatic field of
the isolated solute.49 Thus, the Hamiltonian of eq 6 can be
rewritten as

where the parameterú was introduced to order the perturbation
expansion inVSBi, and its physical value is obviously 1. The
perturbation expansion of the solute wave function satisfying
the Schro¨dinger equation with the Hamiltonian (8) is given by

whereΨS
(1)(S r Bi) denotes the induction wave function of the

solute polarized (to the first order) by the electrostatic field of
the isolatedith molecule of the solvent. We will impose the
intermediate normalization condition onΨS, i.e.

Thus, the wave functionΨS
(1)(S r Bi) is orthogonal toΨS

(0). It
follows directly from eqs 8 and 9 that the perturbation expansion
of ∆G, eq 5, forú ) 1 reads

We assumed here that the operatorVSCRFin eq 5 is replaced by
H - H0, H being defined by eq 8. Furthermore, we can assume
that the wave functions appearing in eq 11 are real (which is
always the case for the interactions of closed-shell systems).
Then, the last two terms of eq 11 cancel, since by virtue of the
perturbation equation forΨS

(1)(S r Bi),

and of the orthogonality ofΨS
(1)(S r Bi) to ΨS

(0), their sum
gives zero. Thus, the expression for∆G becomes

Using the fact that

ΨBi
) ΨBi

(0) + ΨBi

(1)(Bi r S) + ... (7)

H ) H0 + ∑
i)1

N

(ú〈ΨBi

(0)|VSBi
ΨBi

(0)〉Bi
+

2Reú2〈ΨBi

(0)|VSBi
ΨBi

(1)(Bi r S)〉Bi
+ ...) (8)

ΨS ) ΨS
(0) + ∑

i)1

N

úΨS
(1)(S r Bi) + ... (9)

〈ΨS|ΨS
(0)〉 ) 1 (10)

∆G ) ∑
i)1

N (12〈ΨS
(0) ΨBi

(0)|VSBi
ΨS

(0) ΨBi

(0)〉 +

Re〈ΨS
(0) ΨBi

(0)|VSBi
ΨS

(0) ΨBi

(1)(Bi r S)〉 +

Re〈ΨS
(0) ΨBi

(0)|VSBi
ΨS

(1)(S r Bi)ΨBi

(0)〉 +

〈ΨS
(1)(S r Bi)ΨBi

(0)|H0 - E0|ΨS
(1)(S r Bi)ΨBi

(0)〉 + ...) (11)

(H0 - E0)ΨS
(1)(S r Bi) ) (〈ΨS

(0) ΨBi

(0)|VSBi
ΨS

(0) ΨBi

(0)〉 -

〈ΨBi

(0)|VSBi
ΨBi

(0)〉Bi
)ΨS

(0) (12)

∆G ) ∑
i)1

N (12〈ΨS
(0) ΨBi

(0)|VSBi
ΨS

(0) ΨBi

(0)〉 +

〈ΨS
(0) ΨBi

(0)|VSBi
ΨS

(0) ΨBi

(1)(Bi r S)〉 + ...) (13)

H ) H0 + ∑
i)1

N 〈ΨBi
|VSBi

ΨBi
〉Bi

〈ΨBi
|ΨBi

〉Bi

(6)
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and

we find that∆G is given by

whereEind
(2)(Bi r S) is the part of the induction energyEind

(2)(SBi)
that describes the polarization of the solvent, i.e., the interaction
between the permanent moments of the solute with the moments
induced on the solvent by the electrostatic field of the solute.
Equation 16 is the main result of this section. It shows that the
SCRF theory correctly accounts for the electrostatic and major
induction effects. One may note, however, that the SCRF
treatment neglects the induction energy corresponding to the
interaction of the permanent moments of the solvent with the
moments induced on the solute by the electrostatic field of the
solvent, Eind

(2)(S r Bi). For strongly polar solvents this term
may be very important. When the SAPT and SCRF results are
compared, care should be taken of the fact that in the SAPT
approach eq 16 is evaluated atT ) 0 K, while the SCRF
calculations are done at a finiteT. To get one-to-one cor-
respondence between the two sets of calculations, the SAPT
results should be Boltzmann averaged over all configurations
of the solvent molecules.47,50 In the comparisons reported in
section III.B we will assume that the statistical average does
not fundamentally change the SAPT results. It is worth noting
that eq 16 can efficiently be evaluated within the multipole
approximation51,52for a large number of the solvent molecules,
and for a sufficient number of configurations to perform the
Boltzmann average. This approach would present an ab initio
alternative to the semiempirical SCRF-type calculations.

We wish to end this section by noting that in the SCRF
calculations one first computes half of the expectation value of
VSCRF with the wave function of the isolated solute, next the
∆G term, and also half of the expectation value ofVSCRF with
the exact wave function of the soluteΨS. The term 〈ΨS

(0)|
VSCRFΨS

(0)〉 is often referred to as the electrostatic term, while
〈ΨS|VSCRFΨS〉 is believed to represent both the electrostatics
and the induction. In view of the analysis reported above, we
see that these two statements are not fully correct.

D. Computational Details. 1. Basis Sets.The basis sets
employed in the present calculations were described in ref 1.
They were selected for their efficiency from comparisons with
several all electron bases.8 We recall their main characteristics,
the details being already given in ref 1. Pseudopotential basis
sets are used for the palladium and chlorine atoms (28 and 10
core electrons, respectively), all electron basis sets for the other
atoms (C, N, H). All these bases are contracted according
to a split valence scheme, one extra diffuse valence func-
tion being added for H. These basis sets are supplemented
with a polarization function on each atom except for pallad-
ium.

2. Discrete and SCRF Calculations.The details of the discrete
calculations are given in ref 1. The geometry optimizations and
the supermolecular calculations of the interaction energies were
done with the Gaussian-94 package.53 SAPT calculations of the
solute-solvent interaction energies were made with the pro-
grams SAPT.54

Most of the SCRF calculations of the present study are based
on the formalism developed by Rivail and collaborators,32-39

as described in section II.B. The expansion (3) was truncated
at l ) 6. The dielectric constant of dichloromethane atT ) 298
K is ε ) 9.1.55 In a previous work9 we proposed the ellipsoidal
cavity used in the present study. It is derived from the original
model of Rinaldi et al.56,57 The center of the cavity is located
at the center of inertia of the van der Waals spheres of the atoms
of the solute, and the axes of this ellipsoid are obtained from
the inertial tensor of the van der Waals solid of the solute. In
the original model of Rinaldi et al., the volume of the cavity is
equal to the van der Waals volume of the solute. As our
experience shows for the present systems,9 this volume is too
small, implying that such an isotropic transformation is not
satisfactory. We thus proposed a corrected cavity obtained by
applying an anisotropic transformation to the original cavity,
as described in details in ref 9. The computer code for the SCRF
calculations with the cavity described above was linked with
the Gaussian-94 package.53 Part of this code for the calculations
with the ordinary ellipsoidal cavity was previously implemented
in this link by Rinaldi et al.58 The code performing the
optimization of the new ellipsoidal cavity, referred to as cavity
IIc in ref 9, was written in our laboratory.9 As shown in ref 9,
this cavity allows fast calculations.

The calculation of the dispersion and repulsive contributions
to the free energy of solvation were obtained using the Gaussian-
98 code,59 from empirical atom-atom expressions averaged over
the solvent distribution according to Floris et al.43

Since no gradient technique was implemented in our code,
additional SCRF calculations for optimizing geometries in the
continuum were performed with the PCM method using the self-
consistent isodensity surface (SCI-PCM code).40,41,60,61 We
checked, with pointwise calculations, that both codes lead to
similar geometrical parameters.9 The SCI-PCM optimized
geometries were reported in ref 1.

3. Geometries.Our previous studies8 have shown that the
DFT/B3LYP62,63level is adequate for optimizing the geometries.
Four sets of geometrical parameters (G0, G1-1, G6-6, and
GSCI-PCM) have been considered in the present work. They were
described in detail in ref 1. Their main characteristics are as
follows:

sThe G0 geometries refer to the separated systems optimized
in the vacuum (we have thus four G0 geometries corresponding
to the two neutral and the two zwitterionic forms of the solute,
and one G0 geometry for the solvent molecule).

sThe G1-1 geometries correspond to a geometry optimization
performed for each solute-solvent pair, one solvent molecule
being in interaction with each form of the solute via one of its
ligands (and the palladium atom in the case of the zwitterionic
forms). Thus, six G1-1 geometries are considered for each form
of the solute.

sThe G6-6 geometries correspond to the solute surrounded
by six solvent molecules (we have thus four G6-6 geometries,
one for each form of the solute).

sThe four GSCI-PCM geometries result from a geometry
optimization of the four forms of the solute embedded in the
continuum and treated in the SCI-PCM method.

III. Numerical Results and Discussion

Since it was shown in the previous paper1 that the use of the
different sets of geometries (G0, G1-1, G6-6) lead to close results,
we can refer to any of these discrete models without affecting
the conclusions.

Eelst
(1) (SBi) ) 〈ΨS

(0) ΨBi

(0)|VSBi
ΨS

(0) ΨBi

(0)〉 (14)

Eind
(2)(Bi r S) ) 〈ΨS

(0) ΨBi

(0)|VSBi
ΨS

(0) ΨBi

(1)(Bi r S)〉 (15)

∆G ) ∑
i)1

N (12Eelst
(1) (SBi) + Eind

(2)(Bi r S) + ...) (16)
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A. Validity of the Discrete First Solvation Shell Model.
To assess the effect of the second and higher solvation shells
we carried out calculations that couple, at the SCF level, the
discrete and the continuum models in the following way. For
the system made of the complex and six solvent molecules (G6-6

geometry), we first subtract the SCRF energy of the six solvent
molecules and the energy of the complex in the vacuum from
the SCRF energy of the full system. The same cavity was used
for the full system and the subsystem made of the six solvent
molecules. The comparison with the Hartree-Fock results for
the solute and the six solvent molecules in the vacuum yields
an estimate of the energy correction due to the second and higher
shells neglected in our discrete model. In this way, the screening
due to the first solvation shell is also taken into account. The
energy correction amounts to-1.2,-1.1,+0.7, and-0.6 kcal
mol-1 for the four forms, respectively. These values are very
small and suggest that the interaction energy of the solvent with
the solvation shells is correctly accounted for by our model
based on the six solvent molecules in the first solvation sphere.

B. Comparison of the Discrete and Continuum Solvation
Models. In this section, SCRF calculations are performed on
the 1-mer, 1-fac, 2-cis, and 2-trans forms of the solute. SCRF
calculations were performed with the G0 and G6 geometries of
the solute. Both geometries give nearly identical values of
∆GSCRFfor the neutral forms, and the G6 geometries are slightly
more stabilized than the G0 ones (by about 2.5 kcal mol-1) for
the zwitterionic forms. Since the qualitative analysis will not
be altered by these differences, we report here the SCRF results
obtained with the G0 geometries only.

1. Physical Origins of the SolVation Energy in the SCRF
Theory.As shown in section II.C the free solvation energy in
the SCRF model mainly accounts for the electrostatic term and
for the induction contribution due to the polarization of the
solvent by the solute, cf. eq 16. In more sophisticated approaches
it can be supplemented with the dispersion and exchange-
repulsion terms. Since all the contributions mentioned above
were computed by SAPT (G1-1 model),1 we can check the
correctness of the SCRF treatment of the electrostatic/induction
forces, as well as of the dispersion and repulsive contributions.

We start the discussion with the electrostatic and induction
effects. It follows from eq 16 that the free solvation energy in
the SCRF theory computed at the Hartree-Fock level,∆GSCRF,
can directly be compared with the sum of the electrostatic and
induction components from the SAPT calculations. The SAPT
and SCRF results are reported in Table 1. An inspection of this
table shows that the agreement between the results of the discrete

and continuum calculations is good. Indeed, the two sets of the
results agree within 0.1 kcal mol-1 for the 1-facand 2-cis forms;
i.e., the agreement is within 1-2%. Given the fact that the
discrete solvation model is limited to six solvent molecules, and
that the geometry of the solute is not exactly the same in both
calculations, one should say that the observed agreement is to
some extent fortuitous. For the two other forms, the 1-merand
the 2-trans forms, the agreement is also good, although for the
1-mer form the discrepancy reaches 24%. Let us also mention
that the level of agreement between the SCRF and SAPT results
supports the correctness of the (partly heuristic) theoretical
analysis of the SCRF free solvation energy presented in section
II.C. For a further comparison of the corresponding neutral and
zwitterionic forms, we must note, however, that the discrepan-
cies on the 1-merand 2-transones are cumulative, due to their
opposite sign.

As a last comment on this part of the work, we want to stress
that only the polarization of the solvent by the solute is
considered, according to the development of section II.C. This
must be underlined since it is often believed that both the
induction of the solvent by the solute and that of the solute by
the solvent are included through the self-consistent process of
the SCRF treatment. It was shown1 that these two contributions
may be seriously different. However, as can be seen from the
corresponding values quoted in ref 1, the use of half of the total
SAPT induction energy would not modify our qualitative
conclusions.

Usually, the dispersion and exchange-repulsion contributions
to the free energy of solvation are not considered in the SCRF
treatment. As mentioned in section II.D, our code for the SCRF
calculations with an anisotropic ellipsoidal cavity was interfaced
with the Gaussian-94 code, which did not allow us to account
for such terms. Some indicative values could be obtained,
however, using a cavity built on an ensemble of interlocking
spheres and empirical atom-atom expressions averaged over
the solvent distribution according to Floris et al.43 (see section
II.B) as implemented in the Gaussian-98 release.59 The corre-
sponding values are reported in Table 1.

The results presented in Table 1 show that the SCRF
dispersion contribution is in agreement with the SAPT results,
whichever the form of the complex is considered. Indeed, the
differences between the two sets of the results are not larger
than 25%. Interestingly, the SAPT dispersion term varies more
along the series 1-mer, 2-trans, 1-fac, 2-cis than the corre-
sponding SCRF one. This suggests that the parametrization of
the atom-atom SCRF expression for the dispersion energy
could be slightly improved.

More delicate is the SCRF description of the exchange-
repulsion energy. An inspection of Table 1 shows that the SCRF
results are off by a factor of 10-20 depending on the form of
the complex considered. This shows that the parametrization
of the SCRF exchange-repulsion energy is completely unrealistic
for our organometallic complexes.

2. SolVation Energies: Comparison of the Discrete and
Continuum Results.An important goal of our study was to
examine the ability of various theoretical approaches to describe
the solvent effects in organometallic chemistry. In the previous
paper,1 we reported a detailed analysis of the physical contribu-
tions governing the intermolecular forces in the system com-
posed of the palladium complex surrounded by the solvent
molecules. In the previous section of the present paper, we
analyzed the applicability of the continuum model to describe
the solvent effects by comparison of its physical ingredients,
such as the sum of the electrostatic and induction contributions,

TABLE 1: Comparison of the Components and Global
Solvation Energies (in kcal mol-1) for the Four Forms of the
Palladium Complex Calculated by the Discrete and
Continuum Methods

1-mer 2-trans 1-fac 2-cis

∆GSCRF -16.8 -33.2 -11.1 -22.8
∆GSAPTa -22.2 -30.8 -11.0 -22.7
Eint

HF -13.1 -21.6 -7.7 -17.0
∆Gdisp -11.7 -11.8 -11.6 -11.7
Edisp

(2) -13.2 -14.6 -9.3 -12.5
∆Gexch 1.4 1.4 1.4 1.4
Eexch 29.0 37.6 14.4 28.1
∆GMP2-SCRFb -15.6 -28.3 -10.3 -19.0

(-14.8) (-28.0) (-10.6) (-21.0)
∆GMP2-SCRF+ ∆Gdisp + ∆Gexch -25.9 -38.7 -20.5 -29.4
Eint

MP2 -20.3 -26.5 -13.6 -21.0

a Computed from eq 16.b Computed with an ellipsoidal cavity as
described in the computational section. The SCI-PCM values are given
in parentheses.
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or the dispersion and exchange-repulsion terms, with the results
of SAPT calculations. It is also of interest to compare the ability
of the continuum and discrete models to account for the variation
of the solvation energies among the four forms. We want to
reiterate here that in the discrete model we consider the solvation
energy atT ) 0 K, while in the continuum model we compute
the free energy of solvation atT ) 298 K. These two quantities
are different. Besides the difference of the temperatures, the
free energy of solvation takes into account the entropy effect
neglected in the discrete model. Note that the effects of the
solvent reorganization64 were not considered in the present
comparisons. Thus, a disagreement between the two sets of the
results does not necessarily need to be related to some limitations
of the computational methods.

The solvation energy of the four forms can be analyzed from
Table 1. At the Hartree-Fock level both the discrete (seeEint

HF)
and continuum (see∆GSCRF) models predict the zwitterionic
forms to be more stabilized by the solvent than the correspond-
ing neutral ones. Furthermore, the 1-merand 2-trans forms are
more solvated than the 1-facand 2-cis forms, respectively. This
can be traced to a greater ionic character of the Pd-H bonds in
the 1-merand 2-trans forms. One can also note that the SCRF
treatment leads to a stronger stabilization of the complex by
the solvent when compared to the discrete model. This feature
can be related, to some extent, to the incorrect description of
the exchange-repulsion contribution.

Same conclusions are obtained at the MP2 level. Thus, both
(SCRF and discrete) treatments give a similar description of
the solvation of the four forms.

3. RelatiVe Stability of the SolVated Forms: Comparison of
the Discrete and Continuum Results.The previous section
reported a comparison of the solvation energy of the four forms.
To understand the role of the solvent in reactivity, we have also
to consider, in fact, the relative stabilities of the four forms, in
the vacuum and in solution. This is graphically done in Figure
1, the values of the solvated forms being computed either within
the discrete model,Ediscrete

MP2 , or as MP2 free solvation energies,
∆GMP2-SCRF + ∆Gdisp + ∆Gexch. On this figure, the origin of

the energy scale corresponds to the energy of the 2-trans form
in the vacuum, which is the highest. It is convenient to put all
these data on the same figure. However, it must be emphasized
that, as in the previous comparison of the solvation energies,
we only compare the relative stabilities of the four forms in
each model, not the values ofEdiscrete

MP2 and of the MP2 free
solvation energy obtained for the same form.

At this stage a comment about electron correlation is
appropriate. As discussed in refs 21-23, the inclusion of
electronic correlation is crucial for a correct description of the
relative energies of the four forms in the vacuum. The
zwitterionic 2-cis form is less stable than the corresponding
neutral 1-fac form, both at the Hartree-Fock and MP2 levels
(by 5.3 and 20.6 kcal mol-1, respectively). The situation is
different for the two other forms: the 2-transform is more stable
than the 1-merat the Hartree-Fock level (by 11.4 kcal mol-1),
while the opposite is true at the MP2 level (by 12.9 kcal mol-1).
We shall therefore only discuss the MP2 results.

In the discrete model the relative stability of the four solvated
forms follows the trend observed for the vacuum, the energy
differences between the zwitterionic and the corresponding
neutral forms being only decreased (6.7 and 13.2 kcal mol-1

instead of 12.9 and 20.6 kcal mol-1). From this discrete model,
we can thus expect that the solvent will not deeply modify the
gas-phase reaction pattern.

In the SCRF case, the solvated 1-merand 2-transforms have
nearly the same energy. Some SCRF calculations performed
for other geometries of the solute (G6, SCI-PCM geometry)
give even the solvated 2-trans form slightly more stable than
the 1-merone. In contrast, at both levels, the 1-fac structure is
definitively more stable than the 2-cis one. Here too, however,
there is a net decrease in the energy difference on going from
the discrete to the continuum level. Thus, although both the
discrete and the continuum models predict, globally, similar
trends for the stabilization of various forms of the complex in
the solvent, some finer energetic details may be quite different.
In particular, one cannot conclude, from the SCRF model,
wether or not the reactivity in solvent will follow the gas-phase
reaction pattern.

It is interesting to note, as far as the entropy effect is
concerned, that the results of the discrete MP2 and continuum
SCRF calculations do agree. One may expect that this effect
should be about the same for the solvation process of the two
neutral and the two zwitterionic forms. An inspection of Figure
1 shows that this is indeed the case. The differences between
the relative energies of the solvated 1-merand 1-fac forms are
about the same in the discrete and the continuum models (≈38
and 39 kcal mol-1, respectively). The same is true for the 2-trans
and 2-cis forms, the energetic differences being about 32 and
28 kcal mol-1 at the discrete MP2 and SCRF levels of the
theory, respectively. Thus, as long as the comparison is
concerned with either the neutral or the zwitterionic forms only,
both methods correctly predict the relative stabilities of the
various isomers in the solvent. As already recalled, the results
of the discrete calculations are correct forT ) 0 K, while the
continuum calculations are valid atT ) 298 K.

4. QualitatiVe Importance of the Exchange-Repulsion Con-
tribution. We showed in Table 1 and section III.B.1 that the
main discrepancies between the discrete model and the SCRF
calculations arise for the exchange repulsive contributions. In
the discrete model, the exchange terms are significantly larger
for the zwitterionic than for the neutral forms. In the SCRF
model, they are either neglected or evaluated from semiempirical
expressions that give nearly the same value for the four forms.

Figure 1. Relative stabilization energies for the four forms of the PdH3-
Cl(NH3)2 complex in the CH2Cl2 solvent calculated by the discrete
supermolecule and continuum SCRF methods at the MP2 level. The
zero of energy corresponds to the 2-trans form in the vacuum.
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It is clear from Figure 1 that larger repulsive contributions for
the zwitterionic forms in the SCRF model would destabilize
them, leading to results that parallel more those obtained in the
discrete model. A reliable description of the exchange terms is
thus needed to ensure a correct relative stabilities of the solvated
forms. Our results should motivate further research in this
direction.

The neglect or a poor description of the exchange terms may
also have consequences on other properties, in particular the
geometry. In ref 1, we reported the main geometric parameters
obtained for the four forms taken in their geometry G0, G1-1,
G6-6, and GSCI-PCM. We noted that the stretching of the
Pd‚‚‚NH4

+ bond of the zwitterionic forms is much larger in the
GSCI-PCM than in the discrete cases. This can be understood as
an effect of the neglect of the exchange contribution: since the
solute-solvent attraction is not compensated by the repulsive
contribution, the two NH4

+ and [PdH3 (NH3)Cl]- ionic parts
are too much attracted by the solvent, thus leading to an increase
of the Pd‚‚‚N distance.

IV. Conclusions

In this paper we reported a theoretical study of the solvent
effects on various isomers of the palladium hydride complex
PdH3Cl(NH3)2 in dichloromethane. The influence of the solvent
was investigated by the discrete second-order Møller-Plesset
and SAPT calculations, as well as by the continuum SCRF
calculations. Our conclusions can be summarized as follows:

1. A perturbation theory analysis of the free solvation energy,
as defined by the continuum SCRF model, shows that this
energy correctly accounts for the electrostatic and major
induction contributions. It neglects, however, the induction term
that describes the polarization of the solute by the solvent.
Comparison of the numerical results from both SAPT and SCRF
calculations fully supports these theoretical findings.

2. The SCRF dispersion contribution computed from empiri-
cal atom-atom type expressions agrees with the dispersion
energy from SAPT calculations, although its anisotropy is
somewhat less pronounced.

3. The SCRF exchange-repulsion term is strongly underes-
timated, compared to the exchange term from SAPT calcula-
tions. This suggests that the parametrization of the SCRF
empirical expression is not correct for the palladium compounds.

4. Both the discrete MP2 and continuum SCRF models predict
the same relative stabilization by dichloromethane: the zwitte-
rionic forms are more stabilized than the neutral corresponding
ones; within the same class of compounds the 1-merand 2-trans
forms are more stabilized than the 1-fac and 2-cis ones,
respectively.

5. As long as either the neutral or the zwitterionic forms are
compared together, some energetic differences between the
results of the discrete and continuum calculations can be
explained by the entropy effects, neglected in the discrete model.

6. The relative stability of the solvated forms differs somewhat
between the discrete and the SCRF model: the neglect of the
exchange terms in the SCRF model lead to larger solvation
effects compared to the discrete model, especially for the trans
zwitterionic isomer. In this case, this might lead to a different
stability pattern in a vacuum and in solution.

One may of course worry about the ability of the PdH3Cl-
(NH3)2/[PdH2Cl(NH3)]-(NH4)+ systems used in the present
study to model real complexes with methyl (or alkyl) groups.
To check this point, a few calculations were carried out on the
bis(methyl) analogues of these systems, viz. Pd(H)(CH3)2Cl-
(NH3)2 and [Pd(CH3)2Cl(NH3)]-(NH4)+; see Scheme 2, both

in a vacuum and in solution (using the SCI-PCM method and
the G0 geometry). The corresponding results are summarized
in Table 2. It is clear from this Table that the results for the
3-mer/4-trans and 3-fac/4-cis pairs of systems closely mimic
those for the 1-mer/2-trans and 1-fac/2-cis pairs, respectively.
This is not only true for the solvation energies but also for the
relative energies (both in a vacuum and in solution). Thus, the
above conclusions should also hold for the bis methyl analogues.

One should finally discuss, in connection with the SCRF
model, other factors that may come into play. We have already
mentioned that the neglect of the polarization of the solute by
the solvent is not an important factor here but may be more
critical for strongly polar solvents. Another case where this
factor might come into play deals with systems bearing
polarizable ligands. The model ligands used here, i.e., NH3 and
Cl, have low polarizability, and the corresponding induction term
is relatively small. Ligands such as triphenylphosphine, pyridine,
or heavier halogens (bromine or iodine) would probably behave
differently. One may expect, for instance, that the polarization
of the solute by the solvent would shift somewhat the energy
balance between the neutral metal hydride and its zwitterionic
hydride toward the zwitterionic isomer. Such effects certainly
warrant further theoretical studies.
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SCHEME 2

TABLE 2: Solvation and MP2 Relative Energies (∆E, in a
Vacuum and in Solution) for the Hydride and Methyl
Systemsa

solvation energy ∆E (vacuum) ∆E (solution)b

2-trans -28.0 0.0 0.0
1-mer -14.8 -12.9 + 0.3
2-cis -21.0 -37.1 -30.1
1-fac -10.6 -57.7 (-20.6)c -40.3 (-10.2)c

4-trans -24.0 0.0 0.0
3-mer -12.2 -15.5 -3.7
4-cis -18.1 -28.4 -22.5
3-fac -9.9 -48.3 (-19.9)d -34.2 (-11.7)d

a For each type of systems the energy zero corresponds to the isomer
with highest energy, i.e., the 2-transand 4-trans isomers, respectively.
b Using the SCI-PCM method and the G0 geometry.c Relative energy
with respect to the 2-cis isomer.d Relative energy with respect to the
4-cis isomer.
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